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This paper presents a comparative analysis of the budgets of acoustic energy and
Myers’ second-order ‘disturbance energy’ in a simple inhomogeneous flow with heat
communication. The flow considered is non-diffusive and one-dimensional, with
excitation by downstream-travelling acoustic and entropic disturbances. Two forms
of heat communication are examined: a case with only steady heat communication
and another in which unsteady heat addition cancels the generation of entropy
disturbances throughout the inhomogeneous region.

It is shown that significant entropic disturbances are usually generated at low
frequency when a flow with steady heat communication is excited either acoustically
or entropically. However, for acoustic excitation and regardless of the form of heat
communication, entropic disturbances are not created at high frequency, inferring
that all source terms create mainly sound in this limit. A general method is therefore
proposed for determining an approximate frequency beyond which the generation
of entropy disturbances can be ignored, and the disturbance energy flux then
approximates the acoustic energy flux. This frequency is shown to depend strongly
on the problem under investigation, which is expected to have practical significance
when studying sound generation and propagation in combusting flows in particular.
Further, sound is shown to be generated by fluid motion experiencing only steady heat
communication, which is consistent with the known mechanism of sound generation
by the acceleration of density disturbances.

1. Introduction
Since Rayleigh (1896), several forms of acoustic energy conservation equations for

various flows have appeared. Candel (1975) reviews most of these acoustic energies in
situations where there are no source terms. There are several sources of sound in
flows, including turbulence (see Lighthill 1952, 1954) and accelerating density in-
homogenities (see Morfey 1971; Howe 1975; Ffwocs Williams & Howe 1975).
It is also well known that unsteady heat communication can act as a source or
sink of acoustic energy (see Rayleigh 1878). To account for these sources, a number
of acoustic energy conservation equations have been developed, of which Morfey
(1971) is the most cited. Morfey generalizes the earlier work of Cantrell & Hart
(1964) to non-isentropic heat-conducting viscous flows. Morfey’s work was later
extended by Bloxsidge et al. (1988) to include mean and unsteady heat addition in a
one-dimensional flow.

While the above references seek a conservation equation for purely acoustic energy,
other works have put forward other forms of energy that represent all disturbances
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Figure 1. Schematic of the problem. Heating, (dotted line) θ̄0 = 600 K, θ̄l =1200 K and
cooling, (solid line) θ̄0 = 1200 K, θ̄l =600 K, l = 1 m.

in a flow. Chu (1965) developed such a corollary by adding the energy carried by
entropy disturbances to the acoustic energy in a stationary homentropic flow. Pierce
(1989) and Myers (1986) later expressed similar corollaries for homogeneous mean
flows. Nicoud & Poinsot (2005) argued that an energy corollary that includes entropy
disturbances should replace conventional criteria for the stability of combusting flows
based on the conservation of acoustic energy, although this is yet to be successfully
demonstrated. Giauque et al. (2006) extended the energy corollary of Myers (1991)
to full non-equilibrium combustion chemistry. The exact equations were closed on
an unsteady laminar flame showing that several terms in the disturbance energy can
contribute significantly to the total energetics of the flow. Nonetheless, the complexity
of chemical non-equilibrium makes it difficult to understand acoustic and disturbance
energy transport in such flows.

Given the same governing equations of fluid motion, any disturbance energy corol-
lary and the acoustic energy equation must be equivalent (see Myers 1991). However,
a disturbance energy corollary explicitly includes energies of those disturbances that
are not solely acoustic in the energy density and flux terms. It is one aim of this
paper to show the relationship between disturbance energy and acoustic energy in
flows with heat communication. This will be accomplished by closing the extension of
Myer’s second-order disturbance energy corollary for one-dimensional non-diffusive
flow at chemical equilibrium, presented previously by Giauque et al. (2006).

It will be shown that for a given configuration, the difference between the acoustic
and disturbance energies depends strongly on the forcing frequency and unsteady heat
communication. For acoustic excitation, an ‘entropic corner frequency’ is therefore
proposed, beyond which the generation of entropy disturbances can be ignored and
the problem is approximately acoustic. It is argued that this proposed frequency
may allow a less problematic analysis of the sources of higher-frequency sound in
some inhomogeneous flows. As such, it is intended that this paper will provide
some insight into the continued research regarding the unambiguous separation of
acoustic, entropic and vortical disturbances in inhomogeneous flows with and without
heat communication (for example see Doak 1989; Jenvey 1989).

The problem under investigation is shown in figure 1. The mean flow is one-
dimensional and from left to right. The fluid is assumed to be an inviscid
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non-heat-conducting perfect gas. A region of length l with a linear temperature
gradient is connected at either end to homogeneous, semi-infinite regions. When mean
flow is present, this mean temperature gradient is sustained by heat communication,
i.e. heat addition to or subtraction from the flow. In these homogeneous regions the
linear acoustic and entropic disturbances are decoupled and move at the adiabatic
sound speed and mean velocity, respectively. Excitation is provided by incident
downstream travelling acoustic I or entropic s0 disturbances. The response of the
system can be characterized by reflected R and transmitted T acoustic waves, as well
as an outgoing entropic disturbance sl . Unless stated otherwise, throughout this paper
the inlet and exhaust static temperatures and length of the inhomogeneous region are
those specified in figure 1.

2. Theoretical and numerical methods
2.1. Theory

2.1.1. Equations of motion

Consider the one-dimensional Euler equations applied to a calorifically perfect,
ideal gas,

∂

∂t
(ρ) +

∂

∂x
(ρu) = 0, (2.1a)

∂

∂t
(ρu) +

∂

∂x
(p + ρu2) = 0, (2.1b)

∂
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(
p

γ − 1
+ 1

2
ρu2

)
+

∂

∂x

([
γp

γ − 1
+ 1

2
ρu2

]
u

)
= q, (2.1c)

where p (Pa), ρ (kg m−3) and u (m s−1) are, respectively, the static pressure, static
density and flow velocity, q (W m−3) is the heat communication per unit volume and
γ is the ratio of specific heats (γ = 1.4 for all presented calculations). Let ḡ represent
steady quantities satisfying the above equations when all time derivatives are zero,
so that any flow property may be expressed as the superposition of its steady and
disturbance parts such that g = ḡ + g′.

2.1.2. Disturbance energy

Myers (1991) derives his exact disturbance energy corollary from the conservation
equations of mass, momentum and energy as well as the entropy transport equation.
He shows that such an energy accommodates a conservative form with source terms.
Giauque et al. (2006) added species transport and non-equilibrium chemical reaction
to Myers’ exact corollary and then approximated their exact equations to second-
order about a steady mean flow. They stated that such a second-order corollary
should be applied with care in combusting flows, mainly since entropic disturbances
in particular are often large. Here, for the sake of simplicity, all terms associated with
chemical non-equilibrium, viscous and thermal diffusion will be ignored, in which
case Myers’ energy corollary becomes

∂E

∂t
+ ∇ · W = D. (2.2)
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In (2.2), the second-order disturbance energy density E (J M−3), flux vector W (W m−2)
and the second-order source term D (W m−3) are defined, respectively, as

E =
p′2

2ρ̄c̄2
+ 1

2
ρ̄ · u′2 + ρ ′ū · u′ +

ρ̄θ̄ s ′2

2c̄p

, (2.3a)

W = (p′ + ρ̄ ū · u′)

(
u′ +

ρ ′

ρ̄
ū
)

+ m̄θ ′s ′, (2.3b)

D = ρ̄ ū · (ξ ′ × u′) + ρ ′u′ · (ξ̄ × ū) − s ′m′ · (∇θ̄ ) + s ′m̄ · (∇θ ′) +

(
q ′θ ′

θ̄
− q̄θ ′2

θ̄2

)
, (2.3c)

where θ (K) is temperature, u (m s−1) and ξ (s−1) are the velocity and vorticity, m = ρu
is the mass flux and cp (J kg−1K−1) is the gas specific heat at constant pressure.

In the cases of isentropic and homentropic flows, (2.2) to (2.3c) simplify to existing
acoustic energy conservation equations. For homentropic flow, the energy density and
flux terms become those defined by Cantrell & Hart (1964) for acoustic propagation
in a non-stationary medium. In non-isentropic flows without heat communication,
Myers argued that (2.2) to (2.3c) are equivalent to the equations presented by Morfey
(1971). In the source term D, the first two terms represent the generation of disturbance
energy by unsteady vortical motion. The next two terms represent the effect of entropy
disturbances and their interaction with temperature, density and velocity disturbances.
The final two terms describe the effect of steady and unsteady heat communication
interacting with temperature disturbances, with q ′θ ′/θ̄ analogous to the source term
in the so-called ‘Rayleigh criterion’ (see Rayleigh 1878; Nicoud & Poinsot 2005).

2.2. Numerical solver

The present work solves (2.1a)–(2.1c) in conservation form by using the dispersion-
relation-preserving (DRP) scheme of Tam & Webb (1993). The specific DRP scheme
chosen uses an optimized four-level time-marching scheme and seven-point stencil for
spatial differentiation. The choice of such a scheme ensures that the computed waves
are a good approximation of the exact Euler equations. Non-reflecting boundary
conditions are implemented to ensure that the numerical domain approximates an
infinite domain. The exact boundary conditions follow the same formulation given
by Poinsot & Lele (1992) to ensure that the incoming waves at each boundary are
always zero. An exception to this is in the implementation of the system excitation.
The system can be forced by an incoming downstream-travelling pressure or entropy
wave at the inlet. The amplitude of the system excitation is small enough to ensure
that the system is always linear. Numerical damping is employed to remove non-
physical high-frequency waves from the solution. This is a modified version of the
scheme of Tam & Shen (1993), and incorporates damping in regions of entropy
discontinuity. All simulations are run with a Courant–Friedrichs–Lewy number of
0.1. The number of grid points in the inhomogeneous region used in each simulation
is 601. Simulations are run for a sufficiently long time to ensure that no transients
are present in the final results. This solver has been validated on several problems,
such as those presented in Moase, Brear & Manzie (2007), as well as on the results
presented in this paper.

3. Results and discussion
3.1. Acoustic energy analysis

This section examines acoustic wave reflection and transmission by the one-
dimensional system shown in figure 1. The acoustic energy reflection and transmission



Acoustic and disturbance energy analysis of a flow with heat communication 71

0

0.01

0.02

0.03

0 2000 4000 6000 8000 10000
–180

–90

0

90

180

M
ag

ni
tu

de
P

ha
se

 (
D

eg
.)

(a)

0.96

0.98

1.02

1.04

1

100000 2000 4000 6000 8000
Frequency (rad s–1)

Frequency (rad s–1)

(b)

–180

–90

0

90

180

Figure 2. Analytic frequency response of the (a) acoustic energy reflection and
(b) transmission coefficients. M̄ = 0, cooling (solid line) and heating (dashed line).

coefficients are defined as the ratio of the reflected or transmitted acoustic energy
flux to the incident energy flux. It should first be clarified that the concepts of
acoustic reflection and transmission used in this paper are slightly different to those
in classical acoustics. This is due to the possible generation/dissipation of sound in
the heat communicating flows which will be further investigated in the present section.

3.1.1. Zero mean flow

Figure 1 is first considered with zero mean flow and no unsteadiness in heat
communication. There is also no steady heat communication, since the temperature
profile is an initial condition in this non-diffusive flow. Convection of entropy waves
cannot occur and transport of energy in and out of the domain must be described
by the classical acoustic energy flux (see Candel 1975). To satisfy the first law of
thermodynamics, the time-averaged classical acoustic energy fluxes must be conserved,
resulting in (see Dowling & Ffowcs Williams 1983)

1

ρ̄0c̄0

|R|2 +
1

ρ̄l c̄l

|T |2 =
1

ρ̄0c̄0

|I |2, (3.1)

where the wave amplitudes are R = (p′
0 + u′

0/ρ̄0c̄0)/2, I =(p′
0 − u′

0/ρ̄0c̄0)/2 and
T =(p′

l +u′
l/ρ̄l c̄l)/2. Thus, the reflected and transmitted energy coefficients are defined,

respectively, as |R|2/|I |2 and (ρ̄0c̄0/ρ̄l c̄l)|T |2/|I |2 where c is the adiabatic sound speed.
This purely acoustic problem can be solved analytically by extending the results in

Sujith, Waldherr & Zinn (1995). As presented in Appendix A, analytic expressions
can be derived for the reflected and transmitted acoustic waves and the associated
classical acoustic energy reflection and transmission coefficients. Figure 2 shows the
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results of that exact analysis for both heated and cooled flows. According to this
figure, in a stationary medium, a small amount of the incident energy is reflected
at low frequencies while all of the energy is transmitted as ω → ∞. The sum of the
reflected and transmitted energy at a given frequency is always equal to 1, as (3.1)
requires. The results of the exact analysis presented here also agree qualitatively
with the numerically computed acoustic reflection and transmission coefficients for a
similar configuration presented in Candel, Defillipi & Launay (1980a, b).

3.1.2. Non-zero mean flow

The inclusion of non-zero mean flow allows the convection of entropy disturbances
and also requires continuous heat addition or extraction for maintaining the mean
temperature gradient. This is incorporated in the problem by assuming that the flow
has heat communication from external means, which is a reasonable approximation
for a reacting flow in the equilibrium chemistry limit, as well as incident or emitted
radiation, for example. The numerical solver detailed in § 2.2 is used to aid the
analysis. Here only two forms of unsteadiness in heat communication are considered:
steady heat communication and a specific type of unsteady heat communication
which produces no entropy. The latter is accomplished by considering the linearized
entropy transport equation (see Dowling 1995)

∂s ′

∂t
+ ū

∂s ′

∂x
=

q̄R

p̄

(
q ′

q̄
− u′

ū
− p′

p̄

)
. (3.2)

Thus, heat communication will produce no entropy disturbances in the domain if

q ′(x, t)

q̄(x)
=

u′(x, t)

ū(x)
+

p′(x, t)

p̄(x)
. (3.3)

Suppression of entropy disturbances in this way makes the problem purely acoustic,
as (2.2) to (2.3c) show. This is a degenerate case and exceedingly unlikely to occur in
a combusting flow. However, it is the one instance in which the source term in (2.2)
for the present one-dimensional problem becomes exactly purely acoustic. As will be
discussed later, this is of importance for the present study.

3.1.3. Acoustic excitation

The mean acoustic energy flux defined by Cantrell & Hart (1964) within the
homogeneous regions in figure 1 is the mean of

p′u′ + ρ̄ūu′2 +
ū2p′u′

c̄2
+

ūp′2

ρ̄c̄2
. (3.4)

Substituting the earlier definitions of R, I and T into (3.4) the acoustic energy
reflection and transmission coefficients can be defined as the ratio of the reflected
and transmitted acoustic energy flux to the incident acoustic energy flux, and are,
respectively,

(1 − M̄0)
2

(1 + M̄0)2

∣∣∣∣RI
∣∣∣∣
2

,
ρ̄0c̄0

ρ̄l c̄l

(1 + M̄l)
2

(1 + M̄0)2

∣∣∣∣TI
∣∣∣∣
2

, (3.5a, b)

where M is the flow Mach number.
The problem of reflection and transmission of acoustic energy with non-zero finite

mean flow can be solved analytically for a compact inhomogeneous region. The
results of this analysis for both cases of heat unsteadiness are shown in figure 3,
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Figure 3. Amplitudes of the acoustic energy reflection and transmission coefficients for a
compact region with mean flow, excited acoustically and with (a) q ′ = 0 and (b) s ′

gen = 0;
analytical transmission coefficients: cooling (solid lines) and heating (dashed line), analytical
reflection coefficients: cooling (dotted line) and heating (dash-dotted line), simulation (•).

with the full expressions given in Appendix B. Figure 3 also shows the reflection and
transmission coefficients evaluated numerically for the lowest frequency of excitation
studied, ω = 200 rad s−1. The agreement between these two sets of results serve in part
to validate the numerical solver. The small disagreement can be attributed primarily to
the non-zero frequency used in the numerical simulation (as the excitation frequency
tends to zero, the solver takes infinitely long to reach the steady state).

Now consider the frequency response of the coefficients defined in (3.5). Figure 4
shows results with the unsteady heat communication set to zero. This means that the
so-called ‘Rayleigh term’ q ′θ ′/θ̄ plays no part. The transmission coefficient exceeds
unity, indicating that acoustic energy is now generated within the domain. This sound
generation is due to the interaction of steady heat communication with acoustic and
entropic disturbances, as explained later in this paper. In acoustic analyses of flows
with heat communication, the sound generation by steady heat communication is
often ignored and sound production or attenuation is incorrectly attributed to only
the unsteadiness in heat communication.

Figure 5 shows this response in the case of zero entropy generation for the two
non-zero Mach numbers considered in figure 4. Clearly, introduction of a mean flow
and unsteady heat communication have only slightly modified the acoustic energy
reflection coefficient. However, the transmission coefficient has dropped to a value of
about half that for zero unsteady heat communication, indicating that almost half
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of the incident acoustic energy has been dissipated. This is due to the acoustic field
interacting with the unsteady heat communication.

3.1.4. Entropic excitation

In this section, the excitation is entirely due to convective entropy disturbances.
The conversion of entropic disturbance energy to acoustic energy takes place owing
to the interaction of the entropy wave with the accelerating or decelerating mean
flow (see Morfey 1971; Ffwocs Williams & Howe 1975), and also involves interaction
between the generated acoustic wave and the steady heat communication. These
two mechanisms are similar since steady heat addition is proportional to the steady
temperature gradient. The acceleration of a non-diffusive work-free flow also implies
gradients in the mean static temperature field since the stagnation temperature is
constant, in turn implying a non-zero source term s ′m′ · (∇θ̄) in (2.3c).

In terms of the wave amplitudes in figure 1, the time average of the fluxes of
disturbance energy in the homogeneous regions upstream and downstream are,
respectively,

1

2

[
|s ′

0|2 ρ̄0M̄0c̄
3
0

c2
p(γ − 1)

+ |s ′
0||R| c̄0M̄

2
0

cp

− (1 − M̄0)
2

ρ̄0c̄0

|R|2
]

, (3.6a)
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2
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+
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. (3.6b)
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Figure 5. Frequency response of the acoustic energy (a) reflection and (b) transmission
coefficients, cooling case and s ′
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The ratio of the reflected and transmitted acoustic energy fluxes to the incident
entropic energy can be written as, respectively,

c2
p(γ − 1)(1 − M̄0)

2

ρ̄2
0M̄0c̄

4
0

∣∣∣∣Rs ′
0

∣∣∣∣
2

,
c2
p(γ − 1)(1 + M̄l)

2

ρ̄0ρ̄lM̄0c̄
3
0 c̄l

∣∣∣∣Ts ′
0

∣∣∣∣
2

. (3.7a, b)

It should be noted that the above defined reflection and transmission coefficients
are valid for subsonic flows only. It is also worth noting that the ratio of the total
acoustic energy generated to the incident entropic energy is simply the sum of these
two coefficients.

A compact analysis for entropic excitation is presented in Appendix B. Figure 6
compares the numerical reflection and transmission coefficients with the compact
analysis for a cooling case. As can be seen, the two sets of results agree well, with
most of the disagreement again due to the non-zero frequency (ω = 200 rad s−1) used in
the numerical simulations. This figure also shows a strong Mach-number dependence
of the coefficients, with singular results for sonic flow.

The production of acoustic energy by entropic forcing is small at low Mach
numbers, so M̄ = 0.5, is now considered. Figure 7 shows the frequency response of
the reflection and transmission coefficients for the two types of heat unsteadiness
discussed earlier. Most of the sound production occurs in the low-frequency range,
whereas at high frequencies the conversion is negligible.
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3.2. Disturbance energy analysis

The balance of disturbance energy is given by (2.2). This equation is closed on
the present problem and it is shown how mean flow effects appear in the overall
disturbance energy budget of the system. In doing so, (2.2) is first integrated over the
entire inhomogeneous region and then averaged over several periods of excitation.
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After applying the divergence theorem, this results in∫ l

0

∂E

∂t
dx + [W ]

l

0 =

∫ l

0

D dx. (3.8)

The second term on the left-hand side of (3.8) is the time average of the net flux of
disturbance energy out of the region. Expanding this term using its components in
(2.3c) reveals

[W ]
l

0 = f1 + f2 + f3 + f4 + f5, (3.9)

where

f1 = [p′u′]
l

0, f2 = [p′ρ ′ū/ρ̄]
l

0, f3 = [ρ̄ūu′2]
l

0, (3.10a, c)

f4 = [ū2ρ ′u′]
l

0, f5 = [m̄θ ′s ′]
l

0. (3.10d , e)

Similarly, for the source term we have

∫ l

0

D dx = d1 + d2 + d3 + d4, (3.11)

where

d1 =

∫ l

0

[
−s ′m′

(
dθ̄

dx

)]
dx, d2 =

∫ l

0

[
s ′m̄

(
∂θ ′

∂x

)]
dx, (3.12a, b)

d3 =

∫ l

0

(
q ′θ ′

θ̄

)
dx, d4 =

∫ l

0

(
q̄θ ′2

θ̄2

)
dx. (3.12c, d)

The above equations are applied to the flows analysed previously.

3.2.1. Zero mean flow

In this case for zero unsteadiness in heat communication, all source terms must be
zero otherwise the initial temperature distribution would be non-stationary and the
requirement of a steady mean flow would be violated. The source terms d2, d3 and d4

in (3.12) are clearly zero. The source term d1 is also zero, for less obvious reasons.
For zero mean flow and without unsteady heat communication, the linearized

entropy transport equation is

∂s ′

∂t
= −u′ · ∇s̄. (3.13)

Thus, a propagating harmonic acoustic wave causes a harmonic variation in entropy
at a point in space, but no entropy generation since the substantial derivative of s ′

is always zero. For harmonic excitation, s ′ must therefore be orthogonal to u′. The
total source term can therefore be written as

D = −s ′ρ̄u′ · ∇θ̄ . (3.14)

Since u′ and s ′ are orthogonal, the time average of the (3.14) is zero and the entropy
oscillations in (3.13) do not, on average, create any disturbance energy. Since entropy
disturbances cannot enter or leave the stationary homogeneous regions, it follows
that the unsteady energy fluxes are entirely acoustic. The acoustic and disturbance
energies are therefore equivalent, as required by the first law of thermodynamics and
shown earlier in § 3.1.1.
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3.2.2. Acoustic excitation of non-zero mean flow

Figure 8 shows the results of the disturbance energy analysis for the acoustically
excited flow with the mean flow being cooled. All quantities in this figure have
been non-dimensionalized by the incident acoustic energy flux. Figure 8(a) presents
the closure of (2.2) with zero heat unsteadiness and M̄ = 0.1 (as studied earlier in
figures 4 and 5). As expected the frequency response of the flux and source terms in
(3.8) are equal, and the first term on the left-hand side of (3.8) is zero. There is a
strong frequency dependence below 2000 rad s−1 in this test case. All terms become
less frequency dependent at higher frequencies. The occurrence of these peaks and
troughs stems from the existence of the acoustic and convective length scales in the
problem. Excitation of any of the frequencies associated with these length scales
may cause a peak in the budget of a given term of the disturbance energy equation,
depending on the dominance of either acoustic or convective phenomena in that
particular term.

The contribution of each source term in (2.3c) to the total generation of disturbance
energy is also shown in figure 8(b). Since there is no unsteadiness in the heat
absorption, only three of the source terms (d1, d2 and d4) can have an effect. The
frequency dependence below 2000 (rad s−1) and frequency independence at high
frequency is once again observed. In general, the disturbance energy is a combination
of acoustic and entropic terms. However, the net flux of one entropic term, f5, shows
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Figure 9. Closure of the disturbance energy corollary for acoustically excited flow, cooling

and s ′
gen = 0, (a) overall balance, (solid line);

∫ l

0 (∂E/∂t)dx (dotted line); (b) source terms, d1

and d2 (dashed line), d3 (solid line), d4 (dotted line); (c) flux terms, f1 (dash-dotted line), f2

(solid line), f3 (dashed line), f4 (dotted line); (d) flux terms, f5 (dotted line), total flux (solid
line).

that entropy generation in the region tends to zero at higher frequencies. Hence,
the contribution of entropy disturbances to the flux of disturbance energy becomes
negligible as frequency increases and, as a result, the flux of disturbance energy
approaches Cantrell & Hart’s flux of acoustic energy. This behaviour is discussed
further in § 3.3.1.

Unsurprisingly, suppression of entropy production by unsteady heat communication
by using (3.14) has a major effect (figure 9). As is required, the flux and source terms
are again the same. Most notably, there is less frequency dependence compared to
that in the zero heat unsteadiness case. This can be attributed to the elimination of
convective phenomena owing to suppression of entropy disturbances. The negative
terms are due to dissipation of disturbance energy. Since there are no entropy
disturbances in the domain, the disturbance energy density and flux terms in this
very particular case equal those defined by Cantrell & Hart (1964). The only
non-zero source terms in this case are those due to mean and fluctuating heat
communication.

Although not shown here, very similar dynamic behaviour can be observed in the
case of heating the flow. Of course, the overall gain or loss of disturbance energy is
the opposite of the results presented here for the cooled mean flow.
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Figure 10. Closure of the disturbance energy corollary for entropically excited flow, cooling
and (a, b and c) q ′ = 0 and (d , e and f ) s ′

gen = 0; (a, d) overall balance, right-hand side and

left-hand side of (3.8) (solid line and dashed line);
∫ l

0 (∂E/∂t)dx (dotted line); (b, e) source
terms, d1 (dashed line), d2 (dash-dotted line), d3 (dotted line), d4 (solid line); (c, f ) flux terms
f1 (solid line) f2 (dotted line), f3 (dash-dotted line), f4 (dashed line).

3.2.3. Entropic excitation of non-zero mean flow

The total energetics of the system under entropic excitation are shown in figure 10.
All values have been non-dimensionalized by the energy flux of the incident entropy
wave, which is the first term in (3.6a). While d1 and d2 act as a sink of disturbance
energy, d4 adds energy to the system at nearly the same magnitude. The result is an
overall sink which dissipates more than half of the incident disturbance energy flux.
Unsurprisingly, the flux of disturbance energy is mostly due to f5 which represents
energy carried by entropy disturbances. This is supported by the plots of f1 to f4 in
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figure 10(c) which shows that these fluxes are all at least an order of magnitude less
than the net flux in the overall balance on the same figure.

Figure 10(d–f ) shows that suppression of entropy disturbances in the
inhomogeneous region only modifies the results slightly. This is predictable since in
the previous case the acoustics are relatively weak and generate only small amounts
of entropy.

It is initially surprising to observe a loss in disturbance energy when there is no
entropy generation, since the incident entropy wave remains unchanged and a small
amount of sound is generated. However, it should be noted that the drop in the mean
temperature while entropy is kept constant reduces the amplitude of temperature
disturbances and results in the reduction of f5. Thus, in the case of entropic excitation,
the drop in the disturbance energy in both types of heat unsteadiness is almost
independent of the effect of entropy and influenced mainly by the mean temperature
change which is itself a consequence of mean heat communication.

3.3. Asymptotic behaviour of entropy generation

Simple scaling arguments require that the inhomogeneous region becomes homo-
geneous for entropic disturbances in the high-frequency limit. An entropic disturbance
of a given frequency always views the region as more homogeneous, than does an
acoustic disturbance of the same frequency because of their relative convective and
acoustic length scales. This suggests the existence of a ‘corner’ frequency above which
the generation of entropic disturbances becomes small. The following analysis in this
section ultimately leads to a method for determining this frequency.

3.3.1. Entropy generation by acoustic or entropic excitation

It is assumed that all disturbances are harmonic so that

p′ = P (x) exp(iωt), u′ = U (x) exp(iωt), (3.15a, b)

q ′ = Q(x) exp(iωt), s ′ = S(x) exp(iωt), (3.15c, d)

where ω is the excitation frequency. Substituting these into the entropy transport
equation (3.2) and rearranging gives

ū
dS

dx
=

q̄R

p̄

(
Q

q̄
− U

ū
− P

p̄

)
− iωS. (3.16)

When ω = 0, the last term in the right-hand side vanishes and the remaining terms
can be integrated to give the change in the amplitude of entropy disturbance over the
inhomogeneous region,

Sl − S0 =

∫ l

0

dS

dx
dx =

∫ l

0

q̄R

p̄ū

(
Q

q̄
− U

ū
− P

p̄

)
dx. (3.17)

Note that since ω = 0, s ′ = S. The right-hand side of (3.17) is finite and depends on
both the mean and fluctuating properties of the flow.

As the frequency tends to infinity, the second term on the right-hand side of (3.16)
dominates the first term and the entropy transport equation reduces to

ū
dS

dx
= −iωS, (3.18)

which is simply a rearrangement of a homogeneous transport equation. Thus, if no
entropy enters the inhomogeneous region, no entropy appears.
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It has therefore been shown that the linearized transport of entropy within any
inhomogeneous region is strongly frequency dependent. It varies from a finite value at
low frequencies to zero as ω → ∞. Importantly, these results are general for any form
of excitation (acoustic or entropic) and heat communication (steady or unsteady),
provided that the disturbances remain linear and heat communication is independent
of entropy disturbances.

3.3.2. An entropic ‘corner’ frequency

In this section, we seek a frequency at which the generation of entropy disturbances
by acoustic forcing is small enough that it can be ignored. This results in the
disturbance energy flux being approximately equal to the acoustic energy flux for
higher-frequencies. Starting from the flux of disturbance energy defined in (2.3b) and
using the following relations for linearized entropy disturbances

θ ′

θ̄
=

γ − 1

γ

p′

p̄
+

s ′

cp

,
ρ ′

ρ̄
=

1

γ

p′

p̄
− s ′

cp

, (3.19a, b)

the disturbance energy flux can be written in terms of p′, u′ and s ′. For the
homogeneous downstream region, there is no reflection of the acoustic wave so
p′ = 1/(ρ̄l c̄l)u

′. Thus, the disturbance energy in the downstream homogeneous region
can be expressed in terms of only u′ and s ′,

Wl = Wac − ρ̄l c̄
2
l M̄

2
l

cp

u′s ′ +
ρ̄l c̄l θ̄lM̄ l

cp

s ′2, (3.20)

where

Wac = (1 + M̄l)(ρ̄l c̄l)
2

[
1

ρ̄l c̄l

+
1

γ

c̄lM̄l

p̄l

]
u′2, (3.21)

is the flux of acoustic energy. Dividing (3.20) by Wac gives

Wl

Wac

= 1 + ε, (3.22)

where

ε =
θ̄lM̄ l/cp

(1 + M̄l)
[
1 + (1/γ )ρ̄l c̄

2
l M̄ l/p̄l

] (
s ′

u′

)2

− c̄lM̄
2
l /cp

(1 + M̄l)
[
1 + (1/γ )ρ̄l c̄

2
l M̄ l/p̄l

] (
s ′

u′

)
.

(3.23)
We define the corner frequency ω∗ as the forcing frequency at which (3.22) results in
a sufficiently small value of ε. Equation (3.23) determines the value of s ′/u′ in the
downstream homogeneous region for any value of ε.

The linearized entropy transport equation (3.2) can be scaled as follows

s ′ω∗ + ū
s ′

λc

� q̄R

p̄

(
q ′

q̄
− p′

p̄
− u′

ū

)
, (3.24)

in which the temporal and spatial derivatives, ∂( )/∂t and ∂( )/∂x, have been
approximated by ( )ω∗ and ( )/λc, respectively, where λc is the convective wave
length defined as λc = ū/ω∗ and ω∗ is the corner frequency. Thus, as the flow
approaches the end of the inhomogeneous region, x = l, (3.24) can be rearranged to
give

2

(
s ′
l

u′
l

)
ω∗ � q̄lR

p̄l

[
1

q̄l

(
q ′

l

u′
l

)
− 1

p̄l

(
p′

l

u′
l

)
− 1

ūl

]
. (3.25)
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ε 0.1 0.01 0.001

ω∗(theory)(rad s−1) 1698.6 5148.9 14783.7
ω∗(simulation)(rad s−1) 1921.5 5200 14 888
error 11.6 % 0.99 % 0.7%

Table 1. Entropic corner frequencies for the cooling case q ′ = 0, (θ0 = 1200 K,
θl = 600 K, M̄0 = 0.1).

In this equation, s ′
l /u

′
l is equal to s ′/u′ in the downstream homogeneous region given

by (3.23). The transfer function q ′
l /u

′
l has arbitrary form in real flows.

Finally, p′
l/u

′
l in (3.25) is the acoustic impedance at the end of the inhomogeneous

region and is found as follows. Transport of momentum for the present one-
dimensional flow can be written as

ρ
∂u

∂t
+ ρu

∂u

∂x
+

∂p

∂x
= 0. (3.26)

Incorporating the thermodynamic relation (3.19) and the linearized entropy transport
equation (3.2), the linearization of the momentum equation gives

ρ̄
∂u′

∂t
+ ρ̄

dū

dx
u′ +

1

c̄2
ū

dū

dx
p′ − ρ̄ū

cp

dū

dx
s ′ + ρ̄ū

∂u′

∂x
+

∂p′

∂x
= 0. (3.27)

This equation can be scaled similarly to (3.24) with the spatial derivatives of pressure
and velocity disturbances now approximated by ( )/λac where λac = c̄/ω∗ is the acoustic
wave length. The resulting equation can be rearranged in terms of (p′

l/u
′
l)(

p′
l

u′
l

)
� 1

/ (
M̄l

c̄l

dū

dx

∣∣∣∣
l

+
ω∗

c̄l

) [
ρ̄l c̄lM̄ l

cp

dū

dx

∣∣∣∣
l

(
s ′
l

u′
l

)
− ρ̄l(1 + M̄l)ω

∗ − ρ̄l

dū

dx

∣∣∣∣
l

]
.

(3.28)
Upon substitution of (3.28) into (3.25)

2

(
s ′
l

u′
l

)
ω∗

� q̄lR

p̄l

⎡
⎢⎢⎣ 1

q̄l

(
q ′

l

u′
l

)
+

1

p̄l

(1 + M̄l)ρ̄lω
∗ + ρ̄l

dū

dx

∣∣∣∣
l

− (ρ̄l c̄lM̄ l/cp)(s ′
l /u

′
l)

dū

dx

∣∣∣∣
l

(M̄l/c̄l)
dū

dx

∣∣∣∣
l

+ ω∗/c̄l

− 1

ūl

⎤
⎥⎥⎦. (3.29)

For a given transfer function q ′
l /u

′
l , (3.29) can be solved to find ω∗.

Equation (3.29) is substantially simplified for the two cases studied in this paper.
For the case where entropy generation is suppressed, the right-hand side of (3.25)
vanishes and hence ω∗ becomes zero, as expected. For the case with steady heat
communication, the first term in the right-hand side of (3.29) is zero and therefore
this equation reduces to a quadratic in ω∗. Table 1 presents the values of the corner
frequency obtained by solving (3.29) for the steady heat communication case studied
in § 4.2.2, as well as the relative error of the approximate results relative to ω∗ obtained
from the numerical simulations. As expected, the error tends to zero as ε → 0, since
the scaling becomes exact in this case. It is noted that the method presented here is
not limited to non-reflecting downstream boundary conditions, or the two cases of
heat communication studied, as long as the impedance of the downstream boundary
and the transfer function of the unsteady heat communication are known.
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3.3.3. Some practical implications of the entropic corner frequency

This strong dependence of the entropic corner frequency on the particular problem
should have practical significance when studying sound propagation and generation in
combusting flows. This frequency does not have an upper bound for all flows, and was
shown to be exactly zero for one particular form of unsteady heat communication.
Thus, since different combustors feature very different distributions of mean and
unsteady heat release, as well as very different boundary conditions, a source term of
a given magnitude may or may not be generating significant sound, depending on the
particular application and its frequency. It is nonetheless intended that the proposed
entropic corner frequency may permit a less problematic analysis of the interaction
between sound and combusting flows in the higher-frequency range. It remains to be
seen how high this frequency may be relative to other dynamics of interest in actual
combustors.

4. Summary and conclusions
This paper has presented a comparative analysis of the budgets of acoustic energy

and Myers’ second-order disturbance energy in a simple inhomogeneous flow with
heat communication. The flow considered was non-diffusive and one-dimensional, with
excitation by downstream-travelling acoustic and entropic disturbances. Two forms
of heat communication were examined: a case with only steady heat communication
and another in which unsteady heat addition cancelled the generation of entropy
disturbances throughout the inhomogeneous region. The frequency response of the
acoustic and disturbance energy budgets were determined analytically for a non-
compact inhomogeneous region with zero mean flow. Analytic results for a compact
region with mean flow were also presented. Both sets of analytic results were used
to validate high-order accurate numerical simulations of the quasi-one-dimensional
Euler equations for a non-compact inhomogeneous region with mean flow.

It was shown that for acoustic or entropic excitation of the case with mean flow
and steady heat addition, significant entropic disturbances were generated at low
frequency, such that entropic terms in the disturbance energy flux dominated the
acoustic energy flux. However, regardless of the form of heat communication, the
generation of entropic disturbances must diminish with increased forcing frequency
and the source terms then produce mainly sound in response to acoustic excitation.
The reasons for this trend were first argued on simple scaling grounds.

A method was then introduced for determining an approximate frequency beyond
which the generation of entropy disturbances for acoustic excitation could be ignored,
and the more general disturbance energy flux approximated the acoustic energy
flux. This method accommodated arbitrary forms of heat communication and also
upstream and downstream impedances. For the cases studied, it agreed very well
with the numerical simulations. However, because it was shown analytically that one
particular form of unsteady heat communication can result in this corner frequency
being zero, the actual corner frequency for an arbitrary form of heat communication
can vary widely and does not have an upper bound for all flows. This is expected
to have practical significance when studying sound generation and propagation in
combusting flows in particular.

A second result was that sound was shown to be generated by fluid motion
experiencing only steady heat communication. For such flows with entropic excitation,
sound generation was strongly Mach-number dependent, with the second-order energy
analysis becoming singular at sonic flow conditions. Sound generation by steady, heat
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communication was argued to be similar to the known mechanism of sound generation
by acceleration of density disturbances, since both involve source terms containing
steady static temperature gradients. This should also be of practical significance for
combusting flows, as combustion is completed around the combustor exit.

Appendix A. Analytical analysis for zero mean flow
In this section, a general solution for the acoustic wave propagation in a non-

diffusive stationary flow is applied to the problem in figure 1. The appropriate
boundary conditions are found and a particular solution is developed. The sound
reflection and transmission coefficients are then derived.

Sujith et al. (1995) expressed the acoustic wave equation in a varying mean tem-
perature medium as

d2P

dx2
+

1

θ̄

dθ̄

dx

dP

dx
+

ω2

γRθ̄
P = 0, (A 1)

in which P is the spatial component of the harmonic pressure fluctuations defined in
(3.15). Assuming that the mean temperature θ̄ varies linearly with x then θ̄ = θ̄0 + mx

where m =(θ̄l − θ̄0)/l and l is the length of the varying mean temperature region.
A new independent variable κ is introduced as

θ̄ =
m2γR

4ω2
κ2. (A 2)

Substituting this variable into the wave equation (A 1) converts it to a standard Bessel
equation of zeroth order, with a general solution of the form

P = c1J0(κ) + c2Y0(κ) = c1J0

(ω

a

√
θ̄
)

+ c2Y0

(ω

a

√
θ̄
)

, (A 3)

where c1 and c2 are functions of frequency ω only, J0 and Y0 are the Bessel and
Neumann functions and a is a constant defined as a = |m|

√
γR/2. Through application

of the linearized momentum equation, it can also be shown that the acoustic velocity
fluctuation is

U (x) = − m

|m|
i

ρ̄
√

γRθ̄

[
c1J1

(ω

a

√
θ̄
)

+ c2Y1

(ω

a

√
θ̄
)]

. (A 4)

The boundary conditions which specify c1 and c2 are derived from the configuration
of the problem. Assume that the incident acoustic wave I in figure 1 has an associated
velocity fluctuation such that U (0) = υ , where υ is a constant. Since ideally there
is no reflection at the other end of the varying temperature region, it has the same
boundary condition as a semi-infinite duct in which the homogeneous wave equation
is valid. This semi-infinite region contains only right-travelling waves with

p′(x, t) = A exp

(
iωx

c̄l

)
exp(iωt), (A 5)

u′(x, t) =

(
A

ρ̄lc̄l

)
exp

(
iωx

c̄l

)
exp(iωt), (A 6)

where A is a complex constant, ρ̄ is a mean density and c̄ is a mean sonic velocity.
Since there is no temperature jump at the interface of the semi-infinite duct and the
varying temperature region, the acoustic pressure and velocity exhibit

p′(l−, t) = p′(l+, t), u′(l−, t) = u′(l+, t). (A 7a, b)
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These conditions combined with the solution of the wave equation in the semi-infinite
duct give the anechoic boundary condition

P (l) = ρ̄l c̄lU (l). (A 8)

Equation (A 3) then allows determination of the constants c1 and c2 in the following
form

c1 =
B

BC − AD
, c2 = − A

BC − AD
, (A 9a, b)

in which A, B, C and D are

A = J0 (βl) − λJ1 (βl) , B = Y0 (βl) − λY1 (βl) , (A 10a, b)

C = αJ1(β0), D = αY1(β0). (A 10c, d)

In the above relations α, β0, βl and λ are functions of the mean temperature and fre-
quency,

β0 =
ω

a

√
θ̄0, βl =

ω

a

√
θ̄l , α = − m

|m|
i

ρ̄0

√
γRθ̄0

, λ = −i
m

|m| . (A 11a, d)

A.1. The reflection and transmission coefficients

Considering the upstream homogeneous region, the pressure and velocity at the origin
are

P (0) = I + R, U (0) =
1

ρ̄0c̄0

(I − R), (A 12a, b)

where I and R are the amplitudes of the incident and reflected waves, respectively.
By employing (A 5) and (A 6) to express the pressure and velocity at the origin, the
reflection coefficient based on the wave amplitudes can be written as

R

I
=

c1J0(ω/a
√

θ̄0) + c2Y0(ω/a
√

θ̄0) − ρ0

√
γRθ̄0

c1J0(ω/a
√

θ̄0) + c2Y0(ω/a
√

θ̄0) + ρ0

√
γRθ̄0

. (A 13)

A similar argument can be made for the transmission coefficient based on wave
amplitudes, which leads to

T

I
= 2

c1J0(ω/a
√

θ̄l) + c2Y0(ω/a
√

θ̄l)

c1J0(ω/a
√

θ̄0) + c2Y0(ω/a
√

θ̄0) + ρ0

√
γRθ̄0

. (A 14)

Appendix B. Analytical analysis for a compact region with non-zero mean flow
Application of the linearized conservation equations of mass, momentum and either

the energy or transport of entropy to a compact inhomogeneous region in figure 1,
yields the following expressions for the reflection and transmission coefficients.

B.1. Acoustic excitation, (s0 = 0, I 	= 0)

In the case of zero heat unsteadiness

T

I
=

(a1d2 − a2d1)

(a1b2 − a2b1)
,

R

I
=

(b2d1 − b1d2)

(a1b2 − a2b1)
, (B 1a, b)

in which a1, a2, b1, b2, d1 and d1 are

a1 = −M̄2
0 + 2M̄0 − M̄l

c̄l

c̄0

+ M̄0M̄l

C̄l

C̄0

− 1, (B 2a)
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a2 =
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2
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− 1
2
M̄0M̄

2
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+ 1
2
M̄3

0c̄0, (B 2b)

b1 = 1 +
ρ̄0

ρ̄l

c̄0

c̄l

M̄0, (B 2c)

b2 =
c̄l

γ − 1
+

γ

γ − 1
M̄l c̄l +

ρ̄0

ρ̄l

M̄0M̄l c̄0, (B 2d)

d1 = 1 + 2M̄0 − M̄l

c̄l

c̄0

− M̄0M̄l

c̄l

c̄0

+ M̄2
0, (B 2e)
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. (B 2f)

For the second form of heat unsteadiness such that Ds ′/Dt = 0, similar analysis
gives

R

I
=

1 + M̄l

1 + M̄0

− c̄0

c̄l(
1 − M̄0

) (
1 + M̄l

)
(1 + M0)

2
+

c̄0

c̄l

(1 − M0)
2

(1 + Ml)
2

, (B 3a)

and

T

I
=

2

1 + M̄0

c̄0

c̄l

(1 + M̄l)(1 − M̄0)

(1 + M̄l)2
+

(
1 + M̄l

1 + M̄0

)2
. (B 3b)

B.2. Entropic excitation, (I = 0, s0 	= 0)

In the case where q ′ = 0

R

s0

=
(h1b2 − b1h2)(f1e2 − d2h1) + (e1h2 − h1e2)(b2f2 − a2h2)

(f1b2 − a1h2)(f1e2 − d2h1) + (d1h2 − f1e2)(b2f2 − a2h2)
, (B 4a)

T

s0

=
(h1b2 − b1h2)(f1e2 − d1h2) + (e1h2 − h1e2)(f1b2 − a1h2)

(f2b2 − a2h2)(f1e2 − d1h2) + (d2h2 − f2e2)(f1b2 − a1h2)
, (B 4b)

where

a1 =
1

c̄0

(M̄0 − 1), a2 =
1

c̄l

(M̄l + 1), (B 5a, b)

b1 = − ρ̄0M̄0c̄0

Cp

, b2 = − ρ̄lM̄ l c̄l

Cp

, (B 5c, d)

d1 =
Cpθ̄0

c̄0

(M0 − 1) + M̄0c̄0(1 − M̄0), (B 5e)

d2 =
Cpθ̄l

c̄l

(Ml + 1) + M̄l c̄l(1 + M̄l), (B 5f )

e1 =
ρ̄0M̄0c̄

3
0

(γ − 1)Cp

− ρ̄0M̄0θ̄0c̄0, e2 =
ρ̄lM̄ l c̄

3
l

(γ − 1)Cp

− ρ̄lM̄ l θ̄l c̄l , (B 5g, h)

f1 = M̄2
0 − 2M̄0 + 1, f2 = M̄2

l + 2M̄l + 1, (B 5i, j )
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h1 = − ρ̄0M̄
2
0c̄

2
0

Cp

, h2 = − ρ̄lM̄
2
l c̄

2
l

Cp

. (B 5k, l)

For the second type of heat unsteadiness such that Ds ′/Dt = 0

R

s1

=
da2

a2b1 − a1b2

,
T

s1

=
da1

a1b2 − a2b1

, (B 6a, b)

in which

a1 =
−1

c̄0

(1 − M̄0), a2 =
−1

c̄l

(1 + M̄l), (B.7a, b)

b1 = (1 − M̄0)
2, b2 = −(1 + M̄l)

2, (B.7c, d)

d =
1

Cp

ρ̄0M̄0c̄
2
0

(
M̄0 − M̄l

c̄l

c̄0

)
. (B.7e)

In the above relations the downstream mean Mach number M̄l is a function of M̄0 as
well as the upstream mean temperature, and is found by iterative solution e.g. Oates
(1984),

M̄2
l =

2f

1 − 2γf + [1 − 2 (γ + 1) f ]1/2
, (B.8a)

f =
1 + [(γ − 1)/2]M̄2

0(
1 + γ M̄2

0

)2

(
θ̄t0

θ̄t l

)
M̄2

0, (B.8b)

where θ̄t is the mean stagnation temperature.
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